oscilações harmônicas - определение. Что такое oscilações harmônicas
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое oscilações harmônicas - определение

Oscilação; Oscilações Acopladas; Oscilações acopladas; Vibração (física); Vibração forçada
  • Diagrama de Corpo Livre
  • Sistema massa mola e amortecedor com 2 graus de liberdade
  • Exemplo de força aleatória
  • Exemplo de função harmônica
  • nenhum
  • nenhum
  • Massa desbalanceada em rotação num sistema mecânico

Oscilador harmônico         
  • Comportamento do sistema amortecido em razão de  γ
  • O diagrama à direita mostra um ponto (preto) girando em um círculo de raio A sobre a origem. O ângulo que ele faz com o eixo x a qualquer momento t é ωt, onde ω é sua velocidade angular em radianos por segundo. Sua projeção no eixo y (vermelho) mostra um movimento harmônico simples, dado por y (t) = Asin (ωt). O diagrama da esquerda mostra o movimento plotado como uma função de ωt.
  • Oscilador harmônico simples (ideal, sem amortecimento)
MODELO FÍSICO
Movimento oscilatório; Osciladores Harmônicos; Osciladores harmônicos; Oscilador harmónico; Oscilação forçada
Em física, especialmente em mecânica clássica, um oscilador harmônico é um sistema que, quando deslocado de sua posição de equilíbrio, sofre uma força restauradora F proporcional ao deslocamento x:
Harmónico         
  • thumb
  • Comportamento de ondas estacionárias com uma extremidade fixa e uma livre (aberta) . Em vermelho, os nós; em azul, os antinós. A figura apresenta os quatro primeiro harmônicos. Observe que:
<math display="inline">n=1 \quad \Rightarrow \quad \lambda=4L</math>

<math>n=3 \quad \Rightarrow \quad \lambda = \tfrac{4L}{3}</math>

<math>n=5 \quad \Rightarrow \quad \lambda=\tfrac{4L}{5}</math>

<math>n=7 \quad \Rightarrow \quad \lambda= \tfrac{2L}{7}</math>
  • thumb
  • Comportamento de ondas estacionárias com duas extremidades fixas. Em vermelho, os nós; em azul, os antinós. A figura apresenta os quatro primeiro harmônicos. Observe que:
<math display="inline">n=1 \quad \Rightarrow \quad \lambda=2L</math>

<math>n=2 \quad \Rightarrow \quad \lambda=L = \tfrac{2L}{2}</math>

<math>n=3 \quad \Rightarrow \quad \lambda=\tfrac{2L}{3}</math>

<math>n=4 \quad \Rightarrow \quad \lambda=\tfrac{L}{2} = \tfrac{2L}{4}</math>
  • Comportamento de ondas estacionárias com duas extremidades livres (abertas). Em vermelho, os nós; em azul, os antinós. A figura apresenta os quatro primeiro harmônicos. Observe que:
<math display="inline">n=1 \quad \Rightarrow \quad \lambda=2L</math>

<math>n=2 \quad \Rightarrow \quad \lambda=L = \tfrac{2L}{2}</math>

<math>n=3 \quad \Rightarrow \quad \lambda=\tfrac{2L}{3}</math>

<math>n=4 \quad \Rightarrow \quad \lambda=\tfrac{L}{2} = \tfrac{2L}{4}</math>
  • thumb
  • thumb
  • Configuração típica de um som com uma frequência fundamental de 100&nbsp;Hz.
  • Formação de acordes a partir da série harmônica do Dó<sub>1</sub>. Outros acordes podem ser formados com os próximos elementos da série. Os acordes formados por essa parte da série foram, respectivamente, da esquerda para a direita:
C, C<sup>7</sup>, C<sup>9</sup>, E<sub>dim</sub>, E<sup href="Série harmônica (música)">Ø</sup>, G<sub>m</sub>.
  • Animação representando o comportamento de uma onda se propagando entre duas extremidades fixas, em cada linha é apresentado uma harmônico diferente. É possível comparar as duas colunas, na direita há a ênfase no comportamento entre os nós e na coluna da esquerda vê-se a modificação total do modo de vibração em função da frequência do harmônico.
  • left
  • Comportamento das ondas estacionárias com extremidades fixas. A distância entre dois nós consecutivos vai sendo diminuída a cada harmônico, na proporção <math display="inline">\frac{1}{n}, \quad n\in \mathbb{N}^*</math>.
  • Esquema do comportamento de uma onda estacionária (preta). As duas ondas que a formam (azul e vermelha) interferem entre si e formam a onda resultante. Pelo fato das extremidades fixas, as ondas (azul e vermelha) são reflexões da mesma onda. Ao interferirem entre si, formam a onda estacionária (preta). Os pontos vermelhos representam os nós (ou nodos) da onda resultante.
adj.
Relativo à harmonia.
Que tem harmonia.
Coherente.
Regular; proporcionado.
(Lat. harmonicus)
harmônico         
  • thumb
  • Comportamento de ondas estacionárias com uma extremidade fixa e uma livre (aberta) . Em vermelho, os nós; em azul, os antinós. A figura apresenta os quatro primeiro harmônicos. Observe que:
<math display="inline">n=1 \quad \Rightarrow \quad \lambda=4L</math>

<math>n=3 \quad \Rightarrow \quad \lambda = \tfrac{4L}{3}</math>

<math>n=5 \quad \Rightarrow \quad \lambda=\tfrac{4L}{5}</math>

<math>n=7 \quad \Rightarrow \quad \lambda= \tfrac{2L}{7}</math>
  • thumb
  • Comportamento de ondas estacionárias com duas extremidades fixas. Em vermelho, os nós; em azul, os antinós. A figura apresenta os quatro primeiro harmônicos. Observe que:
<math display="inline">n=1 \quad \Rightarrow \quad \lambda=2L</math>

<math>n=2 \quad \Rightarrow \quad \lambda=L = \tfrac{2L}{2}</math>

<math>n=3 \quad \Rightarrow \quad \lambda=\tfrac{2L}{3}</math>

<math>n=4 \quad \Rightarrow \quad \lambda=\tfrac{L}{2} = \tfrac{2L}{4}</math>
  • Comportamento de ondas estacionárias com duas extremidades livres (abertas). Em vermelho, os nós; em azul, os antinós. A figura apresenta os quatro primeiro harmônicos. Observe que:
<math display="inline">n=1 \quad \Rightarrow \quad \lambda=2L</math>

<math>n=2 \quad \Rightarrow \quad \lambda=L = \tfrac{2L}{2}</math>

<math>n=3 \quad \Rightarrow \quad \lambda=\tfrac{2L}{3}</math>

<math>n=4 \quad \Rightarrow \quad \lambda=\tfrac{L}{2} = \tfrac{2L}{4}</math>
  • thumb
  • thumb
  • Configuração típica de um som com uma frequência fundamental de 100&nbsp;Hz.
  • Formação de acordes a partir da série harmônica do Dó<sub>1</sub>. Outros acordes podem ser formados com os próximos elementos da série. Os acordes formados por essa parte da série foram, respectivamente, da esquerda para a direita:
C, C<sup>7</sup>, C<sup>9</sup>, E<sub>dim</sub>, E<sup href="Série harmônica (música)">Ø</sup>, G<sub>m</sub>.
  • Animação representando o comportamento de uma onda se propagando entre duas extremidades fixas, em cada linha é apresentado uma harmônico diferente. É possível comparar as duas colunas, na direita há a ênfase no comportamento entre os nós e na coluna da esquerda vê-se a modificação total do modo de vibração em função da frequência do harmônico.
  • left
  • Comportamento das ondas estacionárias com extremidades fixas. A distância entre dois nós consecutivos vai sendo diminuída a cada harmônico, na proporção <math display="inline">\frac{1}{n}, \quad n\in \mathbb{N}^*</math>.
  • Esquema do comportamento de uma onda estacionária (preta). As duas ondas que a formam (azul e vermelha) interferem entre si e formam a onda resultante. Pelo fato das extremidades fixas, as ondas (azul e vermelha) são reflexões da mesma onda. Ao interferirem entre si, formam a onda estacionária (preta). Os pontos vermelhos representam os nós (ou nodos) da onda resultante.
adj (lat harmonicu)
1 Que tem harmonia.
2 Que diz respeito à harmonia.
3 Coerente, conforme, bem proporcionado, regular, simétrico.
4 Designativo dos sons acessórios, que se produzem ao mesmo tempo que um som fundamental.

Википедия

Vibração


Vibração ou oscilação é qualquer movimento que se repete, regular ou irregularmente dentro de um intervalo de tempo. Na engenharia estes movimentos se processam em elementos de máquinas e em estruturas quando submetidos a ações dinâmicas. Um exemplo universal de oscilações ocorre no movimento de um pêndulo simples, intercalando entre suas posições, suas diferentes formas de energia (cinética e potencial), alternando entre tais energias.

Para realizar uma análise de vibrações é importante verificar os graus de liberdade do sistema mecânico, que consiste em identificar o número mínimo de coordenadas independentes necessárias para descrever o movimento espacial de todas partículas de um sistema em qualquer instante de tempo.

Genericamente os sistemas de vibração são compostos por um meio para armazenar energia potencial (elementos de mola), energia cinética (elemento de massa) e de dissipação de energia (amortecedores).